Lesen sie hier den Beitrag:

Trendprognosen der Software AG für die Fertigungsindustrie: Trendtechnologien kommen in der Wertschöpfungskette an

Die Software AG liefert in diesem Beitrag wesentliche Trendprognosen für die Fertigungsindustrie.

Trendprognosen der Software AG für die Fertigungsindustrie: Trendtechnologien kommen in der Wertschöpfungskette an
Es ist kein Geheimnis, dass Unternehmen in der Fertigungsindustrie ihre digitale Transformation aggressiv umsetzen müssen, um wettbewerbsfähig und erfolgreich zu bleiben. Diese Transformation werden noch schneller vorantreiben, um von neuen Technologien zu profitieren, die nun marktreif werden. Diese haben nämlich das Potenzial, die gesamte Struktur der Branche umzukrempeln.
Software AG Deutschland:

„Ein attraktives Kundenerlebnis wird für alle digitalen Unternehmen weiterhin einen sehr hohen Stellenwert haben. Die Fertigungsindustrie wird nach Wegen suchen, dieses Kundenerlebnis für alle Abschnitte der Wertschöpfungskette anzubieten. Es wird in erster Linie um Expansion und Effizienz gehen, eine radikale Änderung der Preismodelle ist nicht zu erwarten."

Worauf muss sich di...

Dieser Beitrag kann kostenfrei gelesen werden, nachdem sich mit dem uplifted-Account angemeldet wurde. Noch kein uplifted Account? Dann hier kostenfrei registrieren oder hier anmelden:

weitere Beiträge zum Thema:

 

Der EAS-Insider – Ihr Navigator zu einem erfolgreichem Business!

Unsere aktuellen Blog-Beiträge!

Das sind die aktuellen Beiträge zum Thema:

Aktuelle Beiträge zum Thema:
 

DAS EAS-MAG-Glossar für den Beitrag:

Trendprognosen der Software AG für die Fertigungsindustrie: Trendtechnologien kommen in der Wertschöpfungskette an

EAS-MAG-Glossar:

Predictive Maintenance

Predictive Maintenance (vorausschauende Wartung) ist eine Strategie, die in Unternehmenssoftware genutzt wird, um den optimalen Wartungszeitpunkt für Maschinen und Anlagen vorherzusagen. Durch die Analyse von Echtzeitdaten aus Sensoren, Maschinendaten und historischen Wartungsinformationen ermöglicht Predictive Maintenance die Identifizierung von potenziellen Ausfällen, bevor diese auftreten. Diese Methode verwendet Algorithmen und maschinelles Lernen, um Muster und Anomalien zu erkennen. Unternehmen profitieren von einer Reduzierung ungeplanter Ausfallzeiten, einer Verlängerung der Lebensdauer von Anlagen und einer Senkung der Wartungskosten, da Wartungsarbeiten effizienter und gezielter durchgeführt werden können.

Internet of Things

Internet of Things (IoT) vernetzt physische Geräte, Maschinen und Sensoren mit digitalen Systemen, um Echtzeitdaten zu erfassen und auszuwerten. Dies ermöglicht Unternehmen, Betriebsabläufe zu optimieren, Prozesse zu automatisieren und fundierte Entscheidungen zu treffen. In der Fertigung kann IoT z.B. Maschinenwartung vorhersagen und Produktionslinien überwachen. In der Logistik verfolgt es Lieferketten in Echtzeit. Die Integration von IoT in ERP- und CRM-Systeme verbessert zudem das Ressourcenmanagement und die Kundeninteraktion. Insgesamt steigert IoT die Effizienz, senkt Kosten und fördert Innovationen im Unternehmen.

Predictive Maintenance

Predictive Maintenance (vorausschauende Wartung) ist eine Strategie im Bereich der Unternehmenssoftware, die darauf abzielt, den Zustand von Maschinen und Anlagen kontinuierlich zu überwachen, um Wartungsbedarf frühzeitig zu erkennen und Ausfälle zu verhindern. Mithilfe von Sensoren und Datenanalysen werden Betriebsdaten gesammelt und analysiert, um Muster zu identifizieren und Vorhersagen über den optimalen Wartungszeitpunkt zu treffen. Dies reduziert ungeplante Ausfallzeiten, verlängert die Lebensdauer von Anlagen und senkt Wartungskosten. Predictive Maintenance nutzt Technologien wie das Internet der Dinge (IoT) und maschinelles Lernen, um die Effizienz von Produktionsprozessen zu verbessern und die betriebliche Leistung zu optimieren, indem Wartungsaktivitäten gezielt geplant werden.

KI - Künstliche Intelligenz

Künstliche Intelligenz (KI) bezeichnet die Fähigkeit von Computern und Maschinen, Aufgaben zu übernehmen, die normalerweise menschliche Intelligenz erfordern. Dazu gehören Lernen, Problemlösung, Mustererkennung und Entscheidungsfindung. KI-Systeme nutzen Algorithmen und Daten, um eigenständig zu lernen und sich zu verbessern. Beispiele sind maschinelles Lernen, neuronale Netze und natürliche Sprachverarbeitung. KI findet Anwendung in vielen Bereichen, darunter autonome Fahrzeuge, Spracherkennung, personalisierte Empfehlungen und medizinische Diagnosen. Sie bietet das Potenzial, Effizienz und Innovation zu steigern, bringt jedoch auch ethische Herausforderungen und Diskussionen über Datenschutz und Arbeitsplatzveränderungen mit sich. KI verändert die Art und Weise, wie wir leben und arbeiten.

 
Transparenzhinweis für Pressemitteilung
Trendprognosen der Software AG für die Fertigungsindustrie: Trendtechnologien kommen in der Wertschöpfungskette an

Unternehmen

Autor